传感器资讯网 [进入旧版 | 手机触屏版] 传感器资源交流论坛 | Q群交流:118449693 | 在线投稿 | 设为首页 | 加入收藏 | Atom订阅 | RSS订阅
当前位置:传感器资讯网 > 传感器技术 > 正文

智能传感器信号处理的需求分析

时间:2011-12-07 来源:物联网世界 作者:Admin 点击:
输入并测量相应的输出,来设置传感器输出与所需物理参量之间映射的过程。



传感器输出与所测量的物理参量间通常不是线性关系
  在此类情况下(例如热电偶),必须将采样后的传感器数据「线性化」以补偿输入输出间的此种非线性关系。该过程通常会涉及高密集度的计算,如应用高次多项式。

  根据输入数据的大小对其进行换算和常态化
  此类计算要求传感器接口使用的处理器必须具有相当高速的数学运算能力,普通的16位微控制器架构无法满足这样的要求。

此外,在很多应用中,并不只是简单地对传感器讯号进行分析和解读,还必须执行控制操作对传感器讯号进行响应。这些操作可能包括以下几项任务:调整传感器讯号分析软件所使用的校准参数,以便正确分析传感器输出;向其它处理次系统传送数据,例如汽车轮胎上的胎压监控器向仪表板定期发送压力资料并发送警报;在因特网上更新数据,例如定期读取电表读数或定期收集工业数据采集系统的数据;控制电机、电源、继电器、开关和其它设备;采用容错措施,例如修正与故障传感器对应的数据或切换到其它感测组件。 

传统上,使用DSP执行此类数学计算密集的任务。不过,DSP本身(没有关联微控制器)并不是非常适用于传感器接口,理由主要有四个:第一,DSP设备没有灵活的中断结构;其次,DSP设备在控制位如单独的I/O接脚方面的效率不高;再者,DSP设备在很大程度上依赖于外接内存和周边;第四,DSP设备的接脚数一般都比较多,但是传感器处理所需的接脚数应该要非常少,这一点非常重要,因为很多应用一般都有空间限制,并且对成本敏感。 

另一种适用于高效能智能传感器系统的有效单芯片架构平台是16位DSC,如微芯(Microchip)的dsPIC33F系列。DSC是一种创新的混合处理器架构,集16位微控制器的控制功能与丰富的DSP功能于一身。DSC架构非常适用于提供周期性中断,以及捕捉来自多个传感器和控制输入端的数据。若有需要,DSC架构可与分布式系统中的其它控制器模块共享数据。 

  另一方面,DSC的中央处理器支持一系列强大的DSP指令和灵活的寻址模式,因而能够快速准确地进行算术和逻辑运算。接下来,说明让DSC架构适用于智能传感器讯号处理的典型特性。

  DSC必备主要特点 

  典型的DSC架构具有使其适用于大量传感器应用的多种中央处理器和周边特性。以下将探讨这些特性中最有用的几个,在选择DSC架构时,这几个特性是考虑的重点。 

  增强的中央处理器功能 
  16位DSC最强大的特性是可提供丰富的DSP功能。真正的DSC包含两个40位累加器,可用于储存两个独立的16位×16位乘法运算的结果。 

大多数DSP算法如FIR和IIR滤波,都会涉及计算乘积之和。利用特殊指令如乘法与累加计算(Multiply-and-Accumulate, MAC),可以在一个运算速度内将两个16位数字元相乘,将结果加到累加器,然后从随机存取内存(RAM)预先取得一对数据值。利用两个累加器,也可以将数据写回一个累加器,同时在另一个累加器上执行计算。 

累加器宽度为40位(而非32位)时,可以将数据暂时「溢出」(这在累加器中累加大量值时经常发生)。此外,DSC的中央处理器也可以选用一种称为「饱和」的机制,将值保持在允许的范围内,并在将值写回RAM时对值进行取整或换算。DSC的另一项特性(也是微控制器一般缺少的)是其解读分数形式的数据的能力,DSC并不总是假定数据为整数,因而有助于分数运算。 

除上述特性外,还增加各种数据寻址模式,用以高效移动数据,支持环形缓冲区和位反转寻址,以及零耗循环(Zero Overhead Loop)。很显然地,DSC提供了非常强大的使用者友善型中央处理器架构来处理或分析传感器数据。 

灵活的中断结构 
DSC设备的中断结构拥有极高的灵活性。一般来说,支持大量可单独允许并设置优先级的中断源和向量,这对涉及多个传感器的应用非常有利。其中断延迟应该具有高确定性,以简化系统开发人员的工作。显著提高智能传感器讯号处理应用效率的另一个特性是,直接内存存取(Direct Memory Access, DMA),其在周边和内存之间(如在ADC和数据缓冲区间)自动传输大批量的数据。 

运行时自我烧录(RTSP) 
大多数传感器应用都须要储存常数,其用于根据环境条件、变换器输出与预测量之间的偏差量,来校准从传感器获取的资料。后制算法也会使用常数,如滤波系数或快速傅立叶转换旋转因子。但是,在RAM中储存此类常数会浪费数据储存空间。 

DSC设备通常包含闪存(Flash Memory)程序内存和基于闪存的数据电子式可清除程序化只读存储器(EEPROM),可用于高效可靠地储存和存取此类常数。在闪存DSC设备中,使用者的程序甚至可以实时修改这些常数,具体取决于环境、资料或工作条件的变化。 

实体电路串行烧录 
借助闪存DSC,使用者能够使用称为实体电路串行烧录(In-Circuit Serial Programming, ICSP)的方法在现场轻松升级应用韧体。实体电路串行烧录,不仅可以修正传感器校准或软件漏洞,以最少的成本和最短的延迟提供更强的功能,而且能够使同一控制器用在不同类型的传感器接口中及不同的条件下。 

  高解析ADC和DAC 
  传感器一般用于测量温度、压力和光等物理特性。因此,须要使用速度和分辨率足够高的内建ADC,才能测量输入量的微小且快速的变化。对于大多数系统而言,输入分辨率低于12位的ADC可能不够用,非线性误差大于一个最低有效位的ADC也不行。

此外,为测量不同类型参数而采用多种传感器的任何应用,都要求ADC支持多种采样、转换和触发选项。DSC通常包含多个模拟输入频道(因而能够与多个变换器相连接)、灵活的采样/转换选项(如自动在多个输入之间切换以实现连续采样),以及测量差动输入的功能等。为了减少读取转换后的采样所产生的开销,DSC提供了数据格式可配置(例如整数/分数或有符号/无符号)的大内存映像ADC缓冲区。 

内建数字模拟转换器(DAC)模块将数字数据(通常来自对传感器数据的实时分析)转换成可用于驱动外接设备(如制动器)的模拟讯号。尤其是在DAC支持如16位高分辨率的情况下,DAC输出可以被送入扬声器,用于播放语音形式的系统使用说明或系统状态。 

 高速输入捕捉和输出比较 
  在某些传感器应用中,控制器可能会仅为了响应特定事件而读取来自传感器变换器的输入。为了尽可能地降低功耗,控制器可能须要在检测到某种脉冲或讯号前保持休眠状态。DSC具有低功耗工作模式,在该模式下只有内部低功耗振荡器处于活动状态。此后,可透过「输入捕捉」接脚上的控制脉冲或事

关于网站 | 网站声明 | 用户反馈 | 合作伙伴 | 联系我们
Copyright © 2008-2019. 传感器资讯网 All rights reserved. Powered by IDCbe.com, Hosted by 企业域名注册和主机